Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 16, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532411

RESUMO

BACKGROUND: Cytotoxic T lymphocytes (CTLs) are central players in the adaptive immune response. Their functional characterization and clinical research depend on efficient and reliable transfection. Although various methods have been utilized, electroporation remains the preferred technique for transient gene over-expression. However, the efficiency of electroporation is reduced for human and mouse primary CTLs. Lonza offers kits that effectively improve plasmid DNA transfection quality. Unfortunately, the removal of key components of the cell recovery medium considerably reduced the efficiency of their kit for CTLs. Our aim was to develop a new recovery medium to be used with Lonza's Nucleofector system that would significantly enhance transfection rates. RESULTS: We assessed the impact of different media in which the primary CTLs were placed to recover after electroporation on cell survival, transfection rate and their ability to form an immunological synapse and to perform exocytosis. We transfected the cells with pmax-GFP and large constructs encoding for either CD81-super ecliptic pHluorin or granzyme B-pHuji. The comparison of five different media for mouse and two for human CTLs demonstrated that our new recovery medium composed of Opti-MEM-GlutaMAX supplemented with HEPES, DMSO and sodium pyruvate gave the best result in cell survival (> 50%) and transfection rate (> 30 and 20% for mouse and human cells, respectively). More importantly, the functionality of CTLs was at least twice as high as with the original Lonza recovery medium. In addition, our RM significantly improved transfection efficacy of natural killer cells that are notoriously hard to electroporate. CONCLUSION: Our results show that successful transfection depends not only on the electroporation medium and pulse sequence but also on the medium applied for cell recovery. In addition, we have reduced our reliance on proprietary products by designing an effective recovery medium for both mouse and human primary CTLs and other lymphocytes that can be easily implemented by any laboratory. We expect that this recovery medium will have a significant impact on both fundamental and applied research in immunology.


Assuntos
Eletroporação , Linfócitos T Citotóxicos , Humanos , Camundongos , Animais , Eletroporação/métodos , Transfecção , Plasmídeos , DNA/genética
2.
Front Immunol ; 14: 1177670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275872

RESUMO

Regulated exocytosis is a central mechanism of cellular communication. It is not only the basis for neurotransmission and hormone release, but also plays an important role in the immune system for the release of cytokines and cytotoxic molecules. In cytotoxic T lymphocytes (CTLs), the formation of the immunological synapse is required for the delivery of the cytotoxic substances such as granzymes and perforin, which are stored in lytic granules and released via exocytosis. The molecular mechanisms of their fusion with the plasma membrane are only partially understood. In this review, we discuss the molecular players involved in the regulated exocytosis of CTL, highlighting the parallels and differences to neuronal synaptic transmission. Additionally, we examine the strengths and weaknesses of both systems to study exocytosis.


Assuntos
Exocitose , Linfócitos T Citotóxicos , Grânulos Citoplasmáticos/metabolismo , Membrana Celular , Sinapses
3.
Cell Rep ; 42(6): 112543, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37224016

RESUMO

Gonadotropes in the anterior pituitary gland are essential for fertility and provide a functional link between the brain and the gonads. To trigger ovulation, gonadotrope cells release massive amounts of luteinizing hormone (LH). The mechanism underlying this remains unclear. Here, we utilize a mouse model expressing a genetically encoded Ca2+ indicator exclusively in gonadotropes to dissect this mechanism in intact pituitaries. We demonstrate that female gonadotropes exclusively exhibit a state of hyperexcitability during the LH surge, resulting in spontaneous [Ca2+]i transients in these cells, which persist in the absence of any in vivo hormonal signals. L-type Ca2+ channels and transient receptor potential channel A1 (TRPA1) together with intracellular reactive oxygen species (ROS) levels ensure this state of hyperexcitability. Consistent with this, virus-assisted triple knockout of Trpa1 and L-type Ca2+ subunits in gonadotropes leads to vaginal closure in cycling females. Our data provide insight into molecular mechanisms required for ovulation and reproductive success in mammals.


Assuntos
Gonadotrofos , Adeno-Hipófise , Camundongos , Animais , Feminino , Hormônio Luteinizante , Hipófise , Ovulação , Mamíferos
4.
Methods Mol Biol ; 2654: 159-167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106182

RESUMO

Subcellular fractionation is an important tool used to separate intracellular organelles, structures or proteins. Here, we describe a stepwise protocol to isolate two types of lytic granules, multicore (MCG), and single core (SCG), from primary murine CTLs. We used cell disruption by nitrogen cavitation followed by separation of organelles via discontinuous sucrose density gradient centrifugation. Immunoisolation with a Synaptobrevin 2 antibody attached to magnetic beads was then used to harvest Synaptobrevin 2 positive granules for immunoblotting, mass spectrometry, electron, and light microscopy.


Assuntos
Proteínas , Proteína 2 Associada à Membrana da Vesícula , Camundongos , Animais , Fracionamento Celular/métodos , Proteína 2 Associada à Membrana da Vesícula/análise , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas/metabolismo , Técnicas Citológicas , Organelas , Centrifugação com Gradiente de Concentração/métodos , Grânulos Citoplasmáticos , Frações Subcelulares/metabolismo
5.
Front Mol Neurosci ; 15: 674243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493323

RESUMO

Both paralogs of the calcium-dependent activator protein for secretion (CAPS) are required for exocytosis of synaptic vesicles (SVs) and large dense core vesicles (LDCVs). Despite approximately 80% sequence identity, CAPS1 and CAPS2 have distinct functions in promoting exocytosis of SVs and LDCVs in dorsal root ganglion (DRG) neurons. However, the molecular mechanisms underlying these differences remain enigmatic. In this study, we applied high- and super-resolution imaging techniques to systematically assess the subcellular localization of CAPS paralogs in DRG neurons deficient in both CAPS1 and CAPS2. CAPS1 was found to be more enriched at the synapses. Using - in-depth sequence analysis, we identified a unique CAPS1 N-terminal sequence, which we introduced into CAPS2. This CAPS1/2 chimera reproduced the pre-synaptic localization of CAPS1 and partially rescued synaptic transmission in neurons devoid of CAPS1 and CAPS2. Using immunoprecipitation combined with mass spectrometry, we identified CAPS1-specific interaction partners that could be responsible for its pre-synaptic enrichment. Taken together, these data suggest an important role of the CAPS1-N terminus in the localization of the protein at pre-synapses.

6.
Nat Commun ; 13(1): 1029, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210420

RESUMO

Cytotoxic T lymphocytes (CTL) kill malignant and infected cells through the directed release of cytotoxic proteins into the immunological synapse (IS). The cytotoxic protein granzyme B (GzmB) is released in its soluble form or in supramolecular attack particles (SMAP). We utilize synaptobrevin2-mRFP knock-in mice to isolate fusogenic cytotoxic granules in an unbiased manner and visualize them alone or in degranulating CTLs. We identified two classes of fusion-competent granules, single core granules (SCG) and multi core granules (MCG), with different diameter, morphology and protein composition. Functional analyses demonstrate that both classes of granules fuse with the plasma membrane at the IS. SCG fusion releases soluble GzmB. MCGs can be labelled with the SMAP marker thrombospondin-1 and their fusion releases intact SMAPs. We propose that CTLs use SCG fusion to fill the synaptic cleft with active cytotoxic proteins instantly and parallel MCG fusion to deliver latent SMAPs for delayed killing of refractory targets.


Assuntos
Sinapses Imunológicas , Linfócitos T Citotóxicos , Animais , Membrana Celular , Grânulos Citoplasmáticos/metabolismo , Sinapses Imunológicas/metabolismo , Camundongos
7.
Front Mol Neurosci ; 14: 728498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497491

RESUMO

Different families of auxiliary subunits regulate the function and trafficking of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the central nervous system. While a facilitatory role of auxiliary subunits in ER export and forward trafficking of newly synthesized AMPA receptors is firmly established, it is unclear whether auxiliary subunits also control endosomal receptor turnover in dendrites. Here, we manipulated the composition of AMPA receptor complexes in cultured hippocampal neurons by overexpression of two auxiliary subunits, transmembrane AMPAR regulatory protein (TARP) γ-8 or cysteine knot AMPAR-modulating protein (CKAMP) 44a, and monitored dendritic receptor cycling in live-cell imaging experiments. Receptor surface delivery was assayed using a modified AMPA receptor subunit carrying the pH-dependent fluorophore superecliptic pHluorin (SEP-GluA1), which regains its fluorescence during receptor exocytosis, when transiting from the acidic lumen of transport organelles to the neutral extracellular medium. Strikingly, we observed a dramatic reduction in the spontaneous fusion rate of AMPA receptor-containing organelles in neurons overexpressing either type of auxiliary subunit. An analysis of intracellular receptor distribution also revealed a decreased receptor pool in dendritic recycling endosomes, suggesting that incorporation of TARPγ-8 or CKAMP44a in receptor complexes generally diminishes cycling through the endosomal compartment. To directly analyze dendritic receptor turnover, we also generated a new reporter by N-terminal fusion of a self-labeling HaloTag to an AMPA receptor subunit (HaloTag-GluA1), which allows for selective, irreversible staining of surface receptors. Pulse chase-experiments with HaloTag-GluA1 indeed demonstrated that overexpression of TARPγ-8 or CKAMP44a reduces the constitutive internalization rate of surface receptors at extrasynaptic but not synaptic sites. Thus, our data point to a yet unrecognized regulatory function of TARPγ-8 and CKAMP44a, by which these structurally unrelated auxiliary subunits delay local recycling and increase surface lifetime of extrasynaptic AMPA receptors.

8.
Traffic ; 22(3): 78-93, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369005

RESUMO

Large dense core vesicle (LDCVs) biogenesis in neuroendocrine cells involves: (a) production of cargo peptides processed in the Golgi; (b) fission of cargo loaded LDCVs undergoing maturation steps; (c) movement of these LDCVs to the plasma membrane. These steps have been resolved over several decades in PC12 cells and in bovine chromaffin cells. More recently, the molecular machinery involved in LDCV biogenesis has been examined using genetically modified mice, generating contradictory results. To address these contradictions, we have used NPY-mCherry electroporation combined with immunolabeling and super-resolution structured illumination microscopy. We show that LDCVs separate from an intermediate Golgi compartment, mature in its proximity for about 1 hour and then travel to the plasma membrane. The exocytotic machinery composed of vSNAREs and synaptotagmin1, which originate from either de novo synthesis or recycling, is most likely acquired via fusion with precursor vesicles during maturation. Finally, recycling of LDCV membrane protein is achieved in less than 2 hours. With this comprehensive scheme of LDCV biogenesis we have established a framework for future studies in mouse chromaffin cells.


Assuntos
Células Cromafins , Vesículas Secretórias , Animais , Bovinos , Membrana Celular , Exocitose , Camundongos , Células PC12 , Ratos
9.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252488

RESUMO

Cytotoxic T lymphocytes (CTL) are key players of the adaptive immune system that target tumors and infected cells. A central step to that is the formation of a cell-cell contact zone between the CTL and its target called an immune synapse (IS). Here, we investigate the influence of the initial T cell receptor (TCR) trigger of a cytolytic IS on the distinct steps leading to cytotoxic granule (CG) exocytosis. We stimulated primary CTLs from mouse using lipid bilayers with varying anti-CD3 but constant ICAM concentrations. We fluorescently labeled molecular markers of distinct IS zones such as actin, CD3, granzyme B, and Synaptobrevin2 in CTLs and imaged cytolytic IS formation by total internal reflection fluorescence microscopy (TIRFM). We found that an intermediate anti-CD3 concentration of 10 µg/mL induces the fastest adhesion of CTLs to the bilayers and results in maximal CG fusion efficiency. The latency of actin ring formation, dwell time, and maximum surface area at the IS exhibit different dependencies on the stimulatory anti-CD3 concentrations. The number and surface area of CD3 clusters at the IS seem to show a different dependency to the TCR trigger when compared to their dwell time. Finally, the mode of full CG exocytosis appears to be independent of the TCR trigger.


Assuntos
Sinapses Imunológicas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Degranulação Celular/imunologia , Citotoxicidade Imunológica , Exocitose/imunologia , Ativação Linfocitária/imunologia , Camundongos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
10.
Biophys J ; 117(5): 795-809, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31439287

RESUMO

Roughly half of a cell's proteins are located at or near the plasma membrane. In this restricted space, the cell senses its environment, signals to its neighbors, and exchanges cargo through exo- and endocytotic mechanisms. Ligands bind to receptors, ions flow across channel pores, and transmitters and metabolites are transported against concentration gradients. Receptors, ion channels, pumps, and transporters are the molecular substrates of these biological processes, and they constitute important targets for drug discovery. Total internal reflection fluorescence (TIRF) microscopy suppresses the background from the cell's deeper layers and provides contrast for selectively imaging dynamic processes near the basal membrane of live cells. The optical sectioning of TIRF is based on the excitation confinement of the evanescent wave generated at the glass/cell interface. How deep the excitation light actually penetrates the sample is difficult to know, making the quantitative interpretation of TIRF data problematic. Nevertheless, many applications like superresolution microscopy, colocalization, Förster resonance energy transfer, near-membrane fluorescence recovery after photobleaching, uncaging or photoactivation/switching as well as single-particle tracking require the quantitative interpretation of evanescent-wave-excited images. Here, we review existing techniques for characterizing evanescent fields, and we provide a roadmap for comparing TIRF data across images, experiments, and laboratories.


Assuntos
Microscopia de Fluorescência/métodos , Calibragem , Corantes Fluorescentes/química , Refratometria , Espectrometria de Fluorescência
11.
Elife ; 82019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30883328

RESUMO

SNAP-25 is an essential component of SNARE complexes driving fast Ca2+-dependent exocytosis. Yet, the functional implications of the tandem-like structure of SNAP-25 are unclear. Here, we have investigated the mechanistic role of the acylated "linker" domain that concatenates the two SNARE motifs within SNAP-25. Refuting older concepts of an inert connector, our detailed structure-function analysis in murine chromaffin cells demonstrates that linker motifs play a crucial role in vesicle priming, triggering, and fusion pore expansion. Mechanistically, we identify two synergistic functions of the SNAP-25 linker: First, linker motifs support t-SNARE interactions and accelerate ternary complex assembly. Second, the acylated N-terminal linker segment engages in local lipid interactions that facilitate fusion triggering and pore evolution, putatively establishing a favorable membrane configuration by shielding phospholipid headgroups and affecting curvature. Hence, the linker is a functional part of the fusion complex that promotes secretion by SNARE interactions as well as concerted lipid interplay.


Assuntos
Células Cromafins/metabolismo , Fosfolipídeos/metabolismo , Vesículas Secretórias/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Células Cultivadas , Análise Mutacional de DNA , Feminino , Masculino , Camundongos , Ligação Proteica , Multimerização Proteica , Ratos , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/genética
12.
J Neurosci ; 39(1): 18-27, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389842

RESUMO

The calcium-dependent activator proteins for secretion (CAPS) are priming factors for synaptic and large dense-core vesicles (LDCVs), promoting their entry into and stabilizing the release-ready state. A modulatory role of CAPS in catecholamine loading of vesicles has been suggested. Although an influence of CAPS on monoamine transporter function and on vesicle acidification has been reported, a role of CAPS in vesicle loading is disputed. Using expression of naturally occurring splice variants of CAPS2 into chromaffin cells from CAPS1/CAPS2 double-deficient mice of both sexes, we show that an alternative exon of 40 aa is responsible for enhanced catecholamine loading of LDCVs in mouse chromaffin cells. The presence of this exon leads to increased activity of both vesicular monoamine transporters. Deletion of CAPS does not alter acidification of vesicles. Our results establish a splice-variant-dependent modulatory effect of CAPS on catecholamine content in LDCVs.SIGNIFICANCE STATEMENT The calcium activator protein for secretion (CAPS) promotes and stabilizes the entry of catecholamine-containing vesicles of the adrenal gland into a release-ready state. Expression of an alternatively spliced exon in CAPS leads to enhanced catecholamine content in chromaffin granules. This exon codes for 40 aa with a high proline content, consistent with an unstructured loop present in the portion of the molecule generally thought to be involved in vesicle priming. CAPS variants containing this exon promote serotonin uptake into Chinese hamster ovary cells expressing either vesicular monoamine transporter. Epigenetic tuning of CAPS variants may allow modulation of endocrine adrenaline and noradrenaline release. This mechanism may extend to monoamine release in central neurons or in the enteric nervous system.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Vesículas Citoplasmáticas/metabolismo , Éxons/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
13.
Front Cell Neurosci ; 12: 304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254567

RESUMO

The two paralogs of the calcium-dependent activator protein for secretion (CAPS) are priming factors for synaptic vesicles (SVs) and neuropeptide containing large dense-core vesicles (LDCVs). Yet, it is unclear whether CAPS1 and CAPS2 regulate exocytosis of these two vesicle types differentially in dorsal root ganglion (DRG) neurons, wherein synaptic transmission and neuropeptide release are of equal importance. These sensory neurons transfer information from the periphery to the spinal cord (SC), releasing glutamate as the primary neurotransmitter, with co-transmission via neuropeptides in a subset of so called peptidergic neurons. Neuropeptides are key components of the information-processing machinery of pain perception and neuropathic pain generation. Here, we compared the ability of CAPS1 and CAPS2 to support priming of both vesicle types in single and double knock-out mouse (DRG) neurons using a variety of high-resolution live cell imaging methods. While CAPS1 was localized to synapses of all DRG neurons and promoted synaptic transmission, CAPS2 was found exclusively in peptidergic neurons and mediated LDCV exocytosis. Intriguingly, ectopic expression of CAPS2 empowered non-peptidergic neurons to drive LDCV fusion, thereby identifying CAPS2 as an essential molecular determinant for peptidergic signaling. Our results reveal that these distinct functions of both CAPS paralogs are based on their differential subcellular localization in DRG neurons. Our data suggest a major role for CAPS2 in neuropathic pain via control of neuropeptide release.

14.
Neuroscience ; 346: 1-13, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28089870

RESUMO

Peptidergic dorsal root ganglion (DRG) neurons transmit sensory and nociceptive information from the periphery to the central nervous system. Their synaptic activity is profoundly affected by neuromodulatory peptides stored and released from large dense-core vesicles (LDCVs). However, the mechanism of peptide secretion from DRG neurons is poorly understood. Using total internal reflection fluorescence microscopy (TIRFM), we visualized individual LDCVs loaded with fluorescent neuropeptide Y (NPY) and analyzed their stimulation-dependent release. We tested several protocols and found an overall low stimulation-secretion coupling that increased after raising intracellular Ca2+ concentration by applying a weak pre-stimulus. Interestingly, the stimulation protocol also influenced the mechanism of LDCV fusion. Depolarization of DRG neurons with a solution containing 60mM KCl triggered full fusion, kiss-and-run, and kiss-and-stay exocytosis with equal frequency. In contrast, field electrode stimulation primarily induced full fusion exocytosis. Finally, our results indicate that NPY can promote LDCV secretion. These results shed new light on the mechanism of NPY action during modulation of DRG neuron activity, an important pathway in the treatment of chronic pain.


Assuntos
Exocitose , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Vesículas Secretórias/metabolismo , Animais , Células Cultivadas , Camundongos
15.
Sci Rep ; 6: 31105, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27493088

RESUMO

A/B toxins such as cholera toxin, Pseudomonas exotoxin and killer toxin K28 contain a KDEL-like amino acid motif at one of their subunits which ensures retrograde toxin transport through the secretory pathway of a target cell. As key step in host cell invasion, each toxin binds to distinct plasma membrane receptors that are utilized for cell entry. Despite intensive efforts, some of these receptors are still unknown. Here we identify the yeast H/KDEL receptor Erd2p as membrane receptor of K28, a viral A/B toxin carrying an HDEL motif at its cell binding ß-subunit. While initial toxin binding to the yeast cell wall is unaffected in cells lacking Erd2p, binding to spheroplasts and in vivo toxicity strongly depend on the presence of Erd2p. Consistently, Erd2p is not restricted to membranes of the early secretory pathway but extends to the plasma membrane where it binds and internalizes HDEL-cargo such as K28 toxin, GFP(HDEL) and Kar2p. Since human KDEL receptors are fully functional in yeast and restore toxin sensitivity in the absence of endogenous Erd2p, toxin uptake by H/KDEL receptors at the cell surface might likewise contribute to the intoxication efficiency of A/B toxins carrying a KDEL-motif at their cytotoxic A-subunit(s).


Assuntos
Fatores Matadores de Levedura/metabolismo , Receptores de Peptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas , Proteínas de Choque Térmico HSP70 , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Esferoplastos
16.
PLoS One ; 10(8): e0135994, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26296096

RESUMO

Killing of virally infected cells or tumor cells by cytotoxic T lymphocytes requires targeting of lytic granules to the junction between the CTL and its target. We used whole-cell patch clamp to measure the cell capacitance at fixed intracellular [Ca2+] to study fusion of lytic granules in human CTLs. Expression of a fluorescently labeled human granzyme B construct allowed identification of lytic granule fusion using total internal reflection fluorescence microscopy. In this way capacitance steps due to lytic granule fusion were identified. Our goal was to determine the size of fusing lytic granules and to describe their behavior at the plasma membrane. On average, 5.02 ± 3.09 (mean ± s.d.) lytic granules were released per CTL. The amplitude of lytic granule fusion events was ~ 3.3 fF consistent with a diameter of about 325 nm. Fusion latency was biphasic with time constants of 15.9 and 106 seconds. The dwell time of fusing lytic granules was exponentially distributed with a mean dwell time of 28.5 seconds. Fusion ended in spite of the continued presence of granules at the immune synapse. The mobility of fusing granules at the membrane was indistinguishable from that of lytic granules which failed to fuse. While dwelling at the plasma membrane lytic granules exhibit mobility consistent with docking interspersed with short periods of greater mobility. The failure of lytic granules to fuse when visible in TIRF at the membrane may indicate that a membrane-confined reaction is rate limiting.


Assuntos
Membrana Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Sinapses Imunológicas/metabolismo , Fusão de Membrana/imunologia , Linfócitos T Citotóxicos/metabolismo , Cálcio/imunologia , Cálcio/metabolismo , Membrana Celular/imunologia , Membrana Celular/ultraestrutura , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/ultraestrutura , Citotoxicidade Imunológica , Capacitância Elétrica , Eletroporação , Exocitose , Expressão Gênica , Granzimas/genética , Granzimas/imunologia , Granzimas/metabolismo , Humanos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/ultraestrutura , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/imunologia , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Cultura Primária de Células , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/ultraestrutura , Fatores de Tempo
17.
J Cell Biol ; 210(1): 135-51, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26124288

RESUMO

Cytotoxic T lymphocytes (CTLs) eliminate infected and neoplastic cells through directed release of cytotoxic granule contents. Although multiple SNARE proteins have been implicated in cytotoxic granule exocytosis, the role of vesicular SNARE proteins, i.e., vesicle-associated membrane proteins (VAMPs), remains enigmatic. VAMP8 was posited to represent the cytotoxic granule vesicular SNARE protein mediating exocytosis in mice. In primary human CTLs, however, VAMP8 colocalized with Rab11a-positive recycling endosomes. Upon stimulation, these endosomes rapidly trafficked to and fused with the plasma membrane, preceding fusion of cytotoxic granules. Knockdown of VAMP8 blocked both recycling endosome and cytotoxic granule fusion at immune synapses, without affecting activating signaling. Mechanistically, VAMP8-dependent recycling endosomes deposited syntaxin-11 at immune synapses, facilitating assembly of plasma membrane SNARE complexes for cytotoxic granule fusion. Hence, cytotoxic granule exocytosis is a sequential, multivesicle fusion process requiring VAMP8-mediated recycling endosome fusion before cytotoxic granule fusion. Our findings imply that secretory granule exocytosis pathways in other cell types may also be more complex than previously appreciated.


Assuntos
Membrana Celular/metabolismo , Endossomos/metabolismo , Proteínas R-SNARE/fisiologia , Linfócitos T Citotóxicos/imunologia , Degranulação Celular , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Sinapses Imunológicas/metabolismo , Fusão de Membrana , Transporte Proteico , Proteínas Qa-SNARE/metabolismo , Transdução de Sinais
18.
Eur J Immunol ; 44(2): 573-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24227526

RESUMO

CTLs kill target cells via fusion of lytic granules (LGs) at the immunological synapse (IS). Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) function as executors of exocytosis. The importance of SNAREs in CTL function is evident in the form of familial hemophagocytic lymphohistiocytosis type 4 that is caused by mutations in Syntaxin11 (Stx11), a Qa-SNARE protein. Here, we investigate the molecular mechanism of Stx11 function in primary human effector CTLs with high temporal and spatial resolution. Downregulation of endogenous Stx11 resulted in a complete inhibition of LG fusion that was paralleled by a reduction in LG dwell time at the IS. Dual color evanescent wave imaging suggested a sequential process, in which first Stx11 is transported to the IS through a subpopulation of recycling endosomes. The resulting Stx11 clusters at the IS then serve as a platform to mediate fusion of arriving LGs. We conclude that Stx11 functions as a t-SNARE for the final fusion of LG at the IS, explaining the severe phenotype of familial hemophagocytic lymphohistiocytosis type 4 on a molecular level.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Linfócitos T Citotóxicos/metabolismo , Células Cultivadas , Grânulos Citoplasmáticos/imunologia , Regulação para Baixo/imunologia , Endossomos/imunologia , Endossomos/metabolismo , Humanos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/metabolismo , Proteínas Qa-SNARE/imunologia , Proteínas SNARE/imunologia , Linfócitos T Citotóxicos/imunologia
19.
Front Neurosci ; 7: 222, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24324394

RESUMO

The last two decades have seen a tremendous development in high resolution microscopy techniques giving rise to acronyms such as TIRFM, SIM, PALM, STORM, and STED. The goal of all these techniques is to overcome the physical resolution barrier of light microscopy in order to resolve precise protein localization and possibly their interaction in cells. Neuroendocrine cell function is to secrete hormones and peptides on demand. This fine-tuned multi-step process is mediated by a large array of proteins. Here, we review the new microscopy techniques used to obtain high resolution and how they have been applied to increase our knowledge of the molecular mechanisms involved in neuroendocrine cell secretion. Further the limitations of these methods are discussed and insights in possible new applications are provided.

20.
J Neurosci ; 33(43): 17123-37, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24155316

RESUMO

Large dense core vesicle (LDCV) exocytosis in chromaffin cells follows a well characterized process consisting of docking, priming, and fusion. Total internal reflection fluorescence microscopy (TIRFM) studies suggest that some LDCVs, although being able to dock, are resistant to calcium-triggered release. This phenomenon termed dead-end docking has not been investigated until now. We characterized dead-end vesicles using a combination of membrane capacitance measurement and visualization of LDCVs with TIRFM. Stimulation of bovine chromaffin cells for 5 min with 6 µm free intracellular Ca2+ induced strong secretion and a large reduction of the LDCV density at the plasma membrane. Approximately 15% of the LDCVs were visible at the plasma membrane throughout experiments, indicating they were permanently docked dead-end vesicles. Overexpression of Munc18-2 or SNAP-25 reduced the fraction of dead-end vesicles. Conversely, expressing open-syntaxin increased the fraction of dead-end vesicles. These results indicate the existence of the unproductive target soluble N-ethylmaleimide-sensitive factor attachment protein receptor acceptor complex composed of 2:1 syntaxin-SNAP-25 in vivo. More importantly, they define a novel function for this acceptor complex in mediating dead-end docking.


Assuntos
Membrana Celular/metabolismo , Células Cromafins/metabolismo , Vesículas Secretórias/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas Q-SNARE/genética , Proteínas Q-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...